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Noise strength effects on the relaxation properties of weakly coupled Ginzburg-Landau models
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We search for new effects and extend previous investigations on the relaxation properties of weakly coupled
stochastic Ginzburg-Landau models under noise with different intensity. We calculate the one-particle mass up
to second order in the Ginzburg-Landau potential coupling constant and show that, as previously predicted, it
is in fact less sensitive to the noise strength than the two-particle bound staté=Roand 2 and a negative
quartic term in the potential, we show that the difference between these masses becomes smaller as we increase
the noise strength, which indicates the possibility of a crossover for large Gi@sethe two-particle bound
state mass may become smaller than the one-particle) mas$ a phase transitiofthe masses are going to
zerg. Ford=1 and in the ladder approximatidfirst order in the coupling constantve show the absence of
resonances in the spectrum close to the two-particle threshold and the existence of one antibound state for a
positive quartic term in the potential, which indicates the possibility of some bound state due to changes in the
system(e.g., in the noise intensity
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Noise and nonequilibrium processes are everywheredynamical critical phenomenée.g., magnetic systemsin
Moreover, the noise effects are far from trivial: their influ- Ref. [4] a simple version of it is used to describe a system
ence on dynamical properties of many different systems inwithout disorder or explicit frustation with stretched-
physics, biology, mathematics, and other fields are remarkexponential relaxatiorithis regime, of course, depends on
able (e.g., stochastic resonance, noise-induced phase transihe choice of the involved parametgrs
tion, etc) and sometimes even counterintuitive, which makes |n Ref.[1], the effects of changes in the noise intensity in
the study of noise effects on the basic properties of generahe low-lying spectrum of the stochastic Langevin dynamics
stochastic models a subject of fundamental relevance.  generator associated to these massive weakly coupled GL

In this paper we consider theextensively used models are analyzed. The stochastic problem is first mapped
Ginzburg-LandauGL) model with a Langevin dynamics, into a quantum field theory via a Feynman-Kac formalism
and extend the analysis of a previous work of one of thestandard in quantum physics and field the[@}). Then, the
authorg 1] to learn more about the spectrum of the generatoBethe-Salpete(BS) equation for the field correlation func-
of the dynamics. In particular, we search for new effects andions is studied in the ladder approximatiaip to first order
investigate in more detail the action of the noise strength omn the coupling constant), in order to search for the pres-
the relaxation properties of such systems. ence of bound states of two particles. For the space dimen-

Let us present the model. We consider scalar systems inglond=1 and 2, the presence of one bound state is shown
space latticéto avoid the ultraviolet problem, which is irrel- for a negative quartic term in the GL potential, even for
evant for the low-lying spectrupwith stochastic dynamics small noise. In fact, fory=1 this result is rigorously proved

given by the Langevin equation in [6] (besides the existence of an isolated dispersion curve
R R . for the one-particle massive spectrum; other rigorous results
(9l dt) e(x,t)= =3V S(e(X,1))+ n(x,1), (1) have also been established in agreement with some previous
_ analysis using a ladder approximation in R€f8,8]). For
whereg(x,t) e R, te[02°), VS=6S/5¢ with large noise(precisely,\ y~m®, wherea=2,4,6 or 8, it is

. shown, also in Ref[1], that a two-particle bound state ap-
_ > 2 > > pears and disappears agdincreasing the noise intensjty
Sle)= 2 §¢(X)[(_A+ M) e]00FAPle(), () also ford=3 and a negative quartic term in the GL potential,
as well as fod<3 and a positive quartic term. Some curves
where A is the lattice Laplacian\ and m are positive pa- for the bound state mass are depicted below, showinthe
rameters {<1<m), andP is an even polynomialy is a  ladder approximationthat a bound state mass appears and
Gaussian white-noise random variable with the expectationi#s value decays as we increase the noise strength. Compar-
ing to the one-particle mass computated in first ordex ,n
E(5(x,t))=0, E(n(i,t)n(ﬁ,t’)):yb‘);,y'é(t—t’), the curves predictfor some parameters very interesting
phenomenon: the crossover between the masses of the one-
v is positive (the noise strengjh These modelfamong particle and the two-particle bound state for a suitable noise
many other applicationf2,3]) are recurrent in the study of strength: i.e., the bound state mass may become smaller than
the one-particle mass. We emphasize that these spectral re-
sults show up directly in the approach to equilibrium: e.g.,
* Author to whom correspondence should be addressed. Email ador a magnetic system ruled by a stochastic GL mduhethis
dress: epereira@math.rutgers.edu case,p is the magnetization the relaxation(in time) of the
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magnetization fluctuation is given by the two-point correla-where U is the unitary operator Uf(¢)
tion {¢(t) ¢(0)), which behaves like as ekpMt], whereM =7~ Y2exd —S2y]f(¢) from L[ du(e)] to L%(de) (Z is

is the one-particle mass, and the fluctuation of the susceptthe normalization Hence, a Feynman-Kac formula follows
bility is given by (¢(t) ¢(1); (0)¢(0)) (where ; stands for [9]:

the truncated correlationvhich goes as exp-M*t], andM* (Q,fe” 7 WHE, e~ tn-DHE O 5

is the two-particle bound state mass. We also remark that a

these results follow for another similar dynamical system: =(UQ,fe” b, e tn~t-Dbf UQ), 2,
for imaginary time, the Langevin equation becomes a non-

linear Schrdinger equation with the spectrum keeping the :f fale(t)]. .. fle(t,)]dp, (5)
properties described here.

However, the predicted mass crossover phenomenon an .
the bound state ?or the potential with positir\)/e quartic term\'gher.eﬂ(‘[’):1 is the ground state off, fl’fz_' e, are
described above involve noise with intensity in a range tha}un_c\}\}ons of ¢, Lst<...<t,, and dp=e "dv/
makes the question of the validity of the ladder approxima e "dv, with N
tion. In this paper, we perform further analysis on the spec- * R -
trum of the generator of the dynamics, which, besides show- W(#)= fxdt-%d {4_7P (eCGL(=A+mH)e](x,1)
ing us new spectral properties, sheds some light on the <
previous question. We study the two-point function up to TN
second order i\ (we remark that the term order in the + @P (p(x,1))"—
one-particle mass vanishes, which makes unclear the depen-
dence of such mass on the noise strength considering onlyhere’ means the derivative in relation tp, anddv is a
the ladder approximation We show that the one-particle Gaussian measure with mean zero and covariance given by
mass also decreases with the noise but the bound state mass "
decreases much rapid(it happens still in the region where yc(iyt;j,t')ELI dpo
the perturbative approach is certainly corjeet clear evi- 2m)9+t
dence in favor of the crossover phenomenon. &erl, in

2

A -
27 (X0, ®)

the ladder approximation and in the region close to the two- % f d9p exdipo(t—t")+ip-(x—y)]
particle threshold, we show the presence of an antibound J ) d m2\ 2’
state for a positive quartic term in the GL potential, and also pot 2 (1—cosp;) + >

the absence of resonan@fer positive and negative terms =1

We remind that the existence of an antibound state close to @)

the two-particle threshold indicates the possi_bility Qf appearT s the torus - ,m]°.

ance of a bound state due to small changes in the interaction.” N ow we study the two-point functios(x,y) up to second

I_n short_, the presence o_f thIS a_nnbound state in the perturbgs,qer in the coupling constant, where

tive regime may be an indication of a bound state for large

noise. = =

Now we turn to the technical description of our problem. Sy =(e(e(y)) J e(x)e(y)dp,

For any function f(¢) with evolution given by f(#) . .

=E[f(¢(t))], Wwhere ¢(0)=y is some initial condition in X=(Xo,X), Xo=teR, x e 79. To make easier the calculations

Eg. (1), the Langevin dynamics described by Et).leads to ~ We write the polynomial interactio in terms of Wick or-

the time dependendg(y) =e ™f(¢), with the generatoH dered monomialgordered with respect to the covariance

given by vC): P(<p)=2§:2a2n/(2n)!: 2", Thus, straightforward

(but tediou$ calculations give u$(x,y). To understand the

S time decay, we search for the singularities in the Fourier

Hf={ > —Zy— 4+ —— ¢ (3 transform$(ike,k=0) determining the zeroes df(iko,k

xe7d 7 a‘P(X)Z 2 de(X) de(X) —6) whereT"(x i i i -

=0), ,Y) is the inverse convolution of the two
point function S(x,y). The value ofk, gives us the one-
particle mas# (which determines the two-point exponential

where H is Hermitian, positive in L?(du), du time relaxation rate We get
=e S@)/7de/(normalization factor f=1 is the eigenfunc-

92 1 4S d

=

tion with zero eigenvalue. In terms of a Schimger type M= m? 1 A2 agn v an-2
operator we have T2 m2| &5 l4n2n—2)1| 2
_ 2n—1
L=UHU Azndan 2 (l) " ]
— | 2
S 1 3 ! ( S )2 23 anzn=1tHm
Sl 27007 4127 ae0)]  aex0?)] d A
X[ 1+0| —| |+O|| —]| |, (8
(4) m? m?
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FIG. 1. CurveM (one-particle mass for dashed line, and two-  FIG. 2. CurveM (one-particle mass for dashed line, and two-
particle bound state mass for full lines y (noise intensity. m?/2 particle bound state mass for full lines y (noise intensity. m?/2
is the one-particle “bare massd=1, m=10, A=0.001, a,= is the one-particle “bare massd=1, m=10, A=0.001, a,=
—1, ag=0.1, andP(p) =a,/4': p* +agl6!: @°:. —1, ag=0.5, andP(p) =a,/4!: p* + a4/6!: ¢°:.

(assume abova,y ., ,=0). The expression above shows that insignificant, while the dependence of the two-particle bound
the one-particle mass also decreases wijthut, according to ~ State mass is drastic: for=3 the existence of bound state is
Ref. [1] (see the Fig. 1 and Fig. 2 belpwthe bound state €xpected only in the extrapolation of large nojig¢ In rela-
mass decreases more rapidly: e.g., taking as the initial pote#ion to the sign of the GL potential coefficients, we also note
tial P(¢)=a,:¢* +ag:¢°:, for small noise andl=1, both the same fact: the bound state is qum—;‘ sensitive to the sign of
masses decay &s—c,\?, where the coefficient; depends the quartic term, but not the one-particle mass.

on y andm; however,c, for the one-particle mass is given  In a few words, the scenario described above indicates

by the coefficientc; describing the behavior of the bound €ast ford=1 and 2 a possible masses crossover and/or
state mass times a factom$d. We remark that it is happen- Same phase transitiofsince M is going to zero asy in-

ing in a region where the perturbative approach is still accreases _ _

ceptable. To make it clear, we rescale the fields to write the NOW we investigate further spectral structures in the two-
covarianceyC asC in the expression fos above. Thus, we particle sector, searching for resonances .and antibound
get (also using some well known properties of the Wick or- States. We take the truncated four-point function

dering[9
erngto) DXy X 1Xa ) ={ £(60) 9(x2) 0(Xa) £(X2))
S(x,y)zj yb(x) b(y)dp, —(e(x1) 0(X2))(@(X3) @(Xa))-
_ _ Due to translation invarianc® depends only on difference
wheredp=e"Wdv/fe Wd, with variables, and so, we introdugg=X,—X;, 7=X;—Xz, T

- =X3—X,. Itis useful to studyD in terms of the BS equation
- % D=Dy+DKD, where
W<¢>=f dt> > >
—* xezd N=2k=2 Do(X1,X2;X3,X4) =(@(X1) @(X3) )} (X2) ¢(X4))

x[)\y(”l) aon D% ) +{(@(X1) @(Xa) ){@(X2) 9(X3)),

4 (@n=D and the BS kerndK(xq,X5;X3,X4) is given by the sum of all
a2 N (channel two-particle irreducible connected Feynman dia-
X[(—A+m?)p](X,t):+ = > Hkin=2) grams with four(amputategiexternal lines. Taking the Fou-
8 =2 rier transform, the BS equation gives us
Aopaok B - _ N I3 N _ —2(d+1)i ™ -1
X g ) I D(k)=D([1-(2m) KDl %, (9
where the notation means  D((k)f)(p)
anddv is now the Gaussian measure with covariaBogn- EffocdqodedquDx(p,q,k)f(q), etc., wherep,q,k are the

stead. ofyC)'. Remember that t2he bound for the maSSiveconjugate variables of, 5, 7. As described in Ref{1], the
covarianceC _mvolveg a factor In [see_Eq(_?)]. If we also singularities ofﬁ(ko,IZ:(j) on the whole complex plane,
rescale the fields using these factors, i.e., if we repladsy except on the segmentem?m?+4d] and [—m?—4d

Wm, we get a potem'aW(.‘/’). with the main coefficients —m?] in the imaginary axis, must come from the zeroes of
involving N\ (v/m?). Hence, it is transparent that the expres-

sion above involves a small perturbation of the Gaussiart ~ (27) z(dH)K(k)DO('f) (here, we analyze only the spec-
measure with covariand@ (for properly chosen noise inten- trum for zero momenturk=0). Thus, the spectrum is deter-
sity: e.g.,y<m?), which supports our results. Note that the mined by the values df, which makes equal to 1 the eigen-
one-particle mass dependence on the space dimedsion values of (27) 2@+ DK (ko) Do(ko). We have
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eigenvalues= —3a,\y(27) Yu., u.=a* B3, where
(10)
. B(z)={(1+3[m’+iz])?—1} 2
alkg)= | dig——s5—7—,
T Eo(Q)Z“L(k%/"') Here, we are interested only in the singularities close to
2M~m? (whereM is the one particle mass; this is enough to
Bko)= f aq 1 describe resonances and antibound states with directly physi-
0= > = y . . s _im?2 .
T, Eo(q)[Eo(q)2+(k(2,/4)] cal interpretationp Writing z=im“+ ¢, we obtain
Eo(q) 4 g2 112
= [ o 9 B PRI ey
77 B @2 (k) “e\ T2 (o

=6+ .
eingenvectors= 5 BEq(-), The function above, specificallfg(-)=[(-)2—1]"? has a
d continuation to a two-sheeted manifold through the zut
Eo(p)= >, (1—cosp;) +m?/2. e[m?,m?+4] (where z=im?+¢). Thus, u.(2)
i=1 =—4(2m)%3a,\ y, for a,<0 has one solution witl in the
o L imaginary axis belown? in the first sheetit gives the two-
Hence, considering the action bf(ko) on the space gener- particle bound state described in Ref]), and no solution in

ated by the eigenvectors we get the second sheet close na?, which implies the absence of
~ resonances and antibound states. Ber0, there is no
{\/Si \/EEO(')'DA(kO)[\/Si \/EEO(')]} bound statgfor small A and y not large but there is one
d+2 2 5= antibound statésolution in the imaginary axis “belown<,”
= =(2m)7 Ty VRS = (11)  in the second sheet
1+2(2m) Ya\ yu- Turning tou_(2), for z=im2+¢ (]e| small), the expres-

. _ o . sion is analytic and so limited, which leads to the absence of
which, together with the analyticity properties af B, 6, solutions foru_(z)=—4(2m)%3a,\ y if we take X small
etc., gives us the equation for the bound state masaagu- enough(and y not large.
larities) in terms of the noise strength In conclusion, we have seéat least ford=1 and 2 that
_ d increasing the noise strength the difference between the one-
p+ (ko) = =4(2m)"/3a,M y, (12) particle and the bound state masses certainly becomes

(i.e., eigenvalues=1). As previously referred to, a detailed SMaller, which indicates the possibility of a crossover for
analysis of these masses is presented in Raf.Here, to larger noise and/or a phase transition, since the one-particle
search for further points in the spectrum determining, e.g.MaSSM is going to zerp. We remark that the perturbative

- . 2 .
resonances and antibound states, we consider the analy@@2lysis for noise not very largeym®) is supported by

continuation ofu . (ko) onto a secon@Riemann sheet ink,,  1JOrous result§6]. Ford=1, in the ladder approximation, _
and study the r;ossible singularities there. We will be rewe also have shown that there are no resonances but there is

stricted to the casd=1, where the expression far. may ©N€ antiblo.und state close to the two particlg mass thr.eshold

be explicitly computed. Fod=1, we have - for a positive quartic term in the GL potential, which indi-
cates the possibility of a bound state due to changes in the

w+(2)=(27il12)[B(z)—B(—2)]=(27i/2)[B(2) +B(—2)] interactions(changes caused, e.g., by increasing the noise

12 intens_ity. _
x[l— 2B(0) 13 This work was partially supported by CNPq and CAPES
B(2)+B(—-2)| (Brazil).
[1] E. Pereira, Phys. Lett. 882 169(2001). [6] P.A. Faria da Veigeet al, Commun. Math. Phys220, 377
[2] P.C. Hohenbergt al, Rev. Mod. Phys49, 435 (1977). (2002.
[3] H. Spohn, Large Scale Dynamics of Interacting Particles [7]J. Dimocket al, Commun. Math. Phys51, 41 (1976; Ann.
(Springer-Verlag, Berlin, 1991 Phys.(Parig 102 289(1977).
[4] I. Fatkullin, K. Kladko, I. Mitkov, and A.R. Bishop, Phys. Rev. [8] R. Schoret al,, J. Stat. Phy<99, 1265(2000; Phys. Rev. 61,
E 63, 067102(2002). 6156 (2000.
[5] J. Zinn-JustinQuantum Field Theory and Critical Phenomena [9] J. Glimm and A. Jaffe Quantum PhysicgSpringer-Verlag,
(Clarendon Press, Oxford, 1994 New York, 1987.

017101-4



