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Noise strength effects on the relaxation properties of weakly coupled Ginzburg-Landau models
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We search for new effects and extend previous investigations on the relaxation properties of weakly coupled
stochastic Ginzburg-Landau models under noise with different intensity. We calculate the one-particle mass up
to second order in the Ginzburg-Landau potential coupling constant and show that, as previously predicted, it
is in fact less sensitive to the noise strength than the two-particle bound state. Ford51 and 2 and a negative
quartic term in the potential, we show that the difference between these masses becomes smaller as we increase
the noise strength, which indicates the possibility of a crossover for large noise~i.e., the two-particle bound
state mass may become smaller than the one-particle mass! or of a phase transition~the masses are going to
zero!. For d51 and in the ladder approximation~first order in the coupling constant!, we show the absence of
resonances in the spectrum close to the two-particle threshold and the existence of one antibound state for a
positive quartic term in the potential, which indicates the possibility of some bound state due to changes in the
system~e.g., in the noise intensity!.
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Noise and nonequilibrium processes are everywh
Moreover, the noise effects are far from trivial: their infl
ence on dynamical properties of many different systems
physics, biology, mathematics, and other fields are rem
able ~e.g., stochastic resonance, noise-induced phase tr
tion, etc.! and sometimes even counterintuitive, which mak
the study of noise effects on the basic properties of gen
stochastic models a subject of fundamental relevance.

In this paper we consider the~extensively used!
Ginzburg-Landau~GL! model with a Langevin dynamics
and extend the analysis of a previous work of one of
authors@1# to learn more about the spectrum of the genera
of the dynamics. In particular, we search for new effects a
investigate in more detail the action of the noise strength
the relaxation properties of such systems.

Let us present the model. We consider scalar systems
space lattice~to avoid the ultraviolet problem, which is irrel
evant for the low-lying spectrum! with stochastic dynamics
given by the Langevin equation

~]/]t ! w~xW ,t !52 1
2 ¹S„w~xW ,t !…1h~xW ,t !, ~1!

wherew(xW ,t)PR, tP@0,̀ ), ¹S5dS/dw with

S~w!5 (
xWPZd

H 1

2
w~xW !@~2D1m2!w#~xW !1lP„w~xW !…J , ~2!

whereD is the lattice Laplacian,l and m are positive pa-
rameters (l!1!m), andP is an even polynomial.h is a
Gaussian white-noise random variable with the expectat

E„h~xW ,t !…50, E„h~xW ,t !h~yW ,t8!…5gdxW ,yWd~ t2t8!,

g is positive ~the noise strength!. These models~among
many other applications@2,3#! are recurrent in the study o
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dynamical critical phenomena~e.g., magnetic systems!. In
Ref. @4# a simple version of it is used to describe a syst
without disorder or explicit frustation with stretched
exponential relaxation~this regime, of course, depends o
the choice of the involved parameters!.

In Ref. @1#, the effects of changes in the noise intensity
the low-lying spectrum of the stochastic Langevin dynam
generator associated to these massive weakly coupled
models are analyzed. The stochastic problem is first map
into a quantum field theory via a Feynman-Kac formalis
~standard in quantum physics and field theory@5#!. Then, the
Bethe-Salpeter~BS! equation for the field correlation func
tions is studied in the ladder approximation~up to first order
in the coupling constantl), in order to search for the pres
ence of bound states of two particles. For the space dim
sion d51 and 2, the presence of one bound state is sho
for a negative quartic term in the GL potential, even f
small noise. In fact, forg51 this result is rigorously proved
in @6# ~besides the existence of an isolated dispersion cu
for the one-particle massive spectrum; other rigorous res
have also been established in agreement with some prev
analysis using a ladder approximation in Refs.@7,8#!. For
large noise~precisely,lg'ma, wherea52,4,6 or 8!, it is
shown, also in Ref.@1#, that a two-particle bound state ap
pears and disappears again~increasing the noise intensity!
also ford53 and a negative quartic term in the GL potenti
as well as ford<3 and a positive quartic term. Some curv
for the bound state mass are depicted below, showing~in the
ladder approximation! that a bound state mass appears a
its value decays as we increase the noise strength. Com
ing to the one-particle mass computated in first order inl,
the curves predict~for some parameters! a very interesting
phenomenon: the crossover between the masses of the
particle and the two-particle bound state for a suitable no
strength: i.e., the bound state mass may become smaller
the one-particle mass. We emphasize that these spectra
sults show up directly in the approach to equilibrium: e.
for a magnetic system ruled by a stochastic GL model~in this
case,w is the magnetization!, the relaxation~in time! of the
d-
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magnetization fluctuation is given by the two-point corre
tion ^w(t)w(0)&, which behaves like as exp@2Mt#, whereM
is the one-particle mass, and the fluctuation of the susce
bility is given by ^w(t)w(t);w(0)w(0)& ~where ; stands for
the truncated correlation! which goes as exp@2M* t#, andM*
is the two-particle bound state mass. We also remark
these results follow for another similar dynamical syste
for imaginary time, the Langevin equation becomes a n
linear Schro¨dinger equation with the spectrum keeping t
properties described here.

However, the predicted mass crossover phenomenon
the bound state for the potential with positive quartic te
described above involve noise with intensity in a range t
makes the question of the validity of the ladder approxim
tion. In this paper, we perform further analysis on the sp
trum of the generator of the dynamics, which, besides sh
ing us new spectral properties, sheds some light on
previous question. We study the two-point function up
second order inl ~we remark that the term orderl in the
one-particle mass vanishes, which makes unclear the de
dence of such mass on the noise strength considering
the ladder approximation!. We show that the one-particl
mass also decreases with the noise but the bound state
decreases much rapidly~it happens still in the region wher
the perturbative approach is certainly correct!, a clear evi-
dence in favor of the crossover phenomenon. Ford51, in
the ladder approximation and in the region close to the tw
particle threshold, we show the presence of an antibo
state for a positive quartic term in the GL potential, and a
the absence of resonance~for positive and negative terms!.
We remind that the existence of an antibound state clos
the two-particle threshold indicates the possibility of appe
ance of a bound state due to small changes in the interac
In short, the presence of this antibound state in the pertu
tive regime may be an indication of a bound state for la
noise.

Now we turn to the technical description of our proble
For any function f (w) with evolution given by f t(c)
5E@ f „w(t)…#, wherew(0)5c is some initial condition in
Eq. ~1!, the Langevin dynamics described by Eq.~1! leads to
the time dependencef t(c)5e2tH f (c), with the generatorH
given by

H f 5H (
xWPZd

2
1

2
g

]2

]w~xW !2
1

1

2

]S

]w~xW !

]

]w~xW !
J f , ~3!

where H is Hermitian, positive in L2(dm), dm
[e2S(w)/gdw/~normalization factor!. f 51 is the eigenfunc-
tion with zero eigenvalue. In terms of a Schro¨dinger type
operator we have

L5UHU21

5 (
xWPZd

H 2
1

2
g

]2

]w~xW !2
1

1

4 F 1

2g S ]S

]w~xW !
D 2

2
]2S

]w~xW !2G J ,

~4!
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where U is the unitary operator U f (w)
5Z21/2exp@2S/2g# f (w) from L2@dm(w)# to L2(dw) (Z is
the normalization!. Hence, a Feynman-Kac formula follow
@9#:

~V, f 1e2(t22t1)Hf 2 . . . e2(tn2tn21)Hf nV!L2(dm)

5~UV, f 1e2(t22t1)L f 2 . . . e2(tn2tn21)L f nUV!L2(dw)

5E f 1@w~ t1!# . . . f n@w~ tn!#dr, ~5!

where V(w)51 is the ground state ofH, f 1 , f 2 , . . . are
functions of w, t1<t2< . . . <tn , and dr5e2Wdn/
*e2Wdn, with

W~w!5E
2`

`

dt (
xWPZd

H l

4g
P8„w~xW ,t !…@~2D1m2!w#~xW ,t !

1
l2

8g
P8„w~xW ,t !…22

l

4
P9„w~xW ,t !…J , ~6!

where 8 means the derivative in relation tow, and dn is a
Gaussian measure with mean zero and covariance given

gC~xW ,t;yW ,t8![
g

~2p!d11E2`

`

dp0

3E
Td

ddp
exp@ ip0~ t2t8!1 ipW •~xW2yW !#

p0
21S (

i 51

d

~12cospi !1
m2

2 D 2 ,

~7!

Td is the torus (2p,p#d.
Now we study the two-point functionS(x,y) up to second

order in the coupling constantl, where

S~x,y![^w~x!w~y!&[E w~x!w~y!dr,

x[(x0 ,xW ), x0[tPR, xWPZd. To make easier the calculation
we write the polynomial interactionP in terms of Wick or-
dered monomials~ordered with respect to the covarianc
gC): P(w)5(n52

N a2n /(2n)!:w2n:. Thus, straightforward
~but tedious! calculations give usS(x,y). To understand the
S time decay, we search for the singularities in the Four
transform Ŝ( ik0 ,kW50W ) determining the zeroes ofĜ( ik0 ,kW

50W ), whereG(x,y) is the inverse convolution of the two
point function S(x,y). The value ofk0 gives us the one-
particle massM ~which determines the two-point exponenti
time relaxation rate!. We get

M5
m2

2 H 12S l

m2D 2

(
n52

N F a2n
2

4n~2n22!! S g

m2D 2n22

1
a2na2n12

4n~2n21!! S g

m2D 2n21G J
3F11OS d

m2D G1OF S l

m2D 3G , ~8!
1-2
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BRIEF REPORTS PHYSICAL REVIEW E 65 017101
~assume abovea2N1250). The expression above shows th
the one-particle mass also decreases withg, but, according to
Ref. @1# ~see the Fig. 1 and Fig. 2 below!, the bound state
mass decreases more rapidly: e.g., taking as the initial po
tial P(w)5a4 :w4:1a6 :w6:, for small noise andd51, both
masses decay asc02c1l2, where the coefficientc1 depends
on g andm; however,c1 for the one-particle mass is give
by the coefficientc1 describing the behavior of the boun
state mass times a factor 1/m2. We remark that it is happen
ing in a region where the perturbative approach is still
ceptable. To make it clear, we rescale the fields to write
covariancegC asC in the expression forS above. Thus, we
get ~also using some well known properties of the Wick o
dering @9#!

S~x,y!5E gf~x!f~y!dr̃,

wheredr̃5e2W̃dñ/*e2W̃dñ, with

W̃~f!5E
2`

`

dt (
xWPZd

(
n52

N

(
k52

N

3H lg (n21)

4

a2n

~2n21!!
:f (2n21)~xW ,t !

3@~2D1m2!f#~xW ,t !:1
l2

8 (
k52

N

g (k1n22)

3
a2na2k

~2n21!! ~2k21!!
:f (2n21)~xW ,t !::f (2k21)~xW ,t !:J ,

anddñ is now the Gaussian measure with covarianceC ~in-
stead ofgC). Remember that the bound for the mass
covarianceC involves a factor 1/m2 @see Eq.~7!#. If we also
rescale the fields using these factors, i.e., if we replacef by
c/m, we get a potentialW(c) with the main coefficients
involving l(g/m2). Hence, it is transparent that the expre
sion above involves a small perturbation of the Gauss
measure with covarianceC ~for properly chosen noise inten
sity: e.g.,g,m2), which supports our results. Note that th
one-particle mass dependence on the space dimensiond is

FIG. 1. CurveM ~one-particle mass for dashed line, and tw
particle bound state mass for full line! vs g ~noise intensity!. m2/2
is the one-particle ‘‘bare mass.’’d51, m510, l50.001, a45
21, a650.1, andP(w)5a4/4!:w4:1a6/6!:w6:.
01710
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insignificant, while the dependence of the two-particle bou
state mass is drastic: ford53 the existence of bound state
expected only in the extrapolation of large noise@1#. In rela-
tion to the sign of the GL potential coefficients, we also no
the same fact: the bound state is quite sensitive to the sig
the quartic term, but not the one-particle mass.

In a few words, the scenario described above indicates~at
least for d51 and 2! a possible masses crossover and
same phase transition~since M is going to zero asg in-
creases!.

Now we investigate further spectral structures in the tw
particle sector, searching for resonances and antibo
states. We take the truncated four-point function

D~x1 ,x2 ;x3 ,x4![^w~x1!w~x2!w~x3!w~x4!&

2^w~x1!w~x2!&^w~x3!w~x4!&.

Due to translation invariance,D depends only on difference
variables, and so, we introducej5x22x1 , h5x42x3 , t
5x32x2. It is useful to studyD in terms of the BS equation
D5D01DKD0, where

D0~x1 ,x2 ;x3 ,x4![^w~x1!w~x3!&^w~x2!w~x4!&

1^w~x1!w~x4!&^w~x2!w~x3!&,

and the BS kernelK(x1 ,x2 ;x3 ,x4) is given by the sum of all
~channel! two-particle irreducible connected Feynman d
grams with four~amputated! external lines. Taking the Fou
rier transform, the BS equation gives us

D̃~k!5D̃~k!@12~2p!22(d11)K̃~k!D̃0~k!#21, ~9!

where the notation means (D̃l(k) f )(p)
[*2`

` dq0*Td
ddqD̃l(p,q,k) f (q), etc., wherep,q,k are the

conjugate variables ofj,h,t. As described in Ref.@1#, the
singularities ofD̃(k0 ,kW50W ) on the whole complex plane
except on the segments@m2,m214d# and @2m224d,
2m2# in the imaginary axis, must come from the zeroes
12(2p)22(d11)K̃(k)D̃0(k) ~here, we analyze only the spec
trum for zero momentumkW50W ). Thus, the spectrum is dete
mined by the values ofk0 which makes equal to 1 the eigen
values of (2p)22(d11)K̃(k0)D̃0(k0). We have

FIG. 2. CurveM ~one-particle mass for dashed line, and tw
particle bound state mass for full line! vs g ~noise intensity!. m2/2
is the one-particle ‘‘bare mass.’’d51, m510, l50.001, a45
21, a650.5, andP(w)5a4/4!:w4:1a6/6!:w6:.
1-3
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eigenvalues52 3
4 a4lg~2p!2dm6 , m65a6Abd,

~10!

a~k0![E
Td

ddq
1

E0~qW !21~k0
2/4!

,

b~k0![E
Td

ddq
1

E0~qW !@E0~qW !21~k0
2/4!#

,

d~k0![E
Td

ddq
E0~qW !

E0~qW !21~k0
2/4!

eingenvectors5Ad6AbE0~• !,

E0~pW !5(
j 51

d

~12cospj !1m2/2.

Hence, considering the action ofD̃(k0) on the space gener
ated by the eigenvectors we get

$Ad6AbE0~• !,D̃l~k0!@Ad6AbE0~• !#%

5
6~2p!d12g2Abdm6

11 3
4 ~2p!2da4lgm6

, ~11!

which, together with the analyticity properties ofa, b, d,
etc., gives us the equation for the bound state masses~singu-
larities! in terms of the noise strengthg

m6~k0!524~2p!d/3a4lg, ~12!

~i.e., eigenvalues51). As previously referred to, a detaile
analysis of these masses is presented in Ref.@1#. Here, to
search for further points in the spectrum determining, e
resonances and antibound states, we consider the ana
continuation ofm6(k0) onto a second~Riemann! sheet ink0,
and study the possible singularities there. We will be
stricted to the cased51, where the expression form6 may
be explicitly computed. Ford51, we have

m6~z!5~2p i /z!@B~z!2B~2z!#6~2p i /z!@B~z!1B~2z!#

3F12
2B~0!

B~z!1B~2z!G
1/2

, ~13!
s

.

a

01710
.,
tic

-

where

B~z!5$~11 1
2 @m21 iz# !221%21/2.

Here, we are interested only in the singularities close
2M'm2 ~whereM is the one particle mass; this is enough
describe resonances and antibound states with directly ph
cal interpretation!. Writing z5 im21«, we obtain

m15
4p

m2 F S 11
i«

2 D 2

21G21/2

1O~1/m4!.

The function above, specifically:F(•)5@(•)221#1/2, has a
continuation to a two-sheeted manifold through the cuz
P@m2,m214# ~where z5 im21«). Thus, m6(z)
524(2p)d/3a4lg, for a4,0 has one solution withz in the
imaginary axis belowm2 in the first sheet~it gives the two-
particle bound state described in Ref.@1#!, and no solution in
the second sheet close tom2, which implies the absence o
resonances and antibound states. Fora4.0, there is no
bound state~for small l and g not large! but there is one
antibound state~solution in the imaginary axis ‘‘belowm2,’’
in the second sheet!.

Turning tom2(z), for z5 im21« (u«u small!, the expres-
sion is analytic and so limited, which leads to the absence
solutions form2(z)524(2p)d/3a4lg if we take l small
enough~andg not large!.

In conclusion, we have seen~at least ford51 and 2! that
increasing the noise strength the difference between the
particle and the bound state masses certainly beco
smaller, which indicates the possibility of a crossover
larger noise and/or a phase transition, since the one-par
massM is going to zero!. We remark that the perturbativ
analysis for noise not very large (g!m2) is supported by
rigorous results@6#. For d51, in the ladder approximation
we also have shown that there are no resonances but the
one antibound state close to the two particle mass thres
for a positive quartic term in the GL potential, which ind
cates the possibility of a bound state due to changes in
interactions~changes caused, e.g., by increasing the no
intensity!.
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